Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 83(8): 3114-25, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26015478

RESUMO

Bacillus anthracis secretes the edema toxin (ET) that disrupts the cellular physiology of endothelial and immune cells, ultimately affecting the adherens junction integrity of blood vessels that in turn leads to edema. The effects of ET on the cytoskeleton, which is critical in cell physiology, have not been described thus far on macrophages. In this study, we have developed different adhesive micropatterned surfaces (L and crossbow) to control the shape of bone marrow-derived macrophages (BMDMs) and primary peritoneal macrophages. We found that macrophage F-actin cytoskeleton adopts a specific polar organization slightly different from classical human HeLa cells on the micropatterns. Moreover, ET induced a major quantitative reorganization of F-actin within 16 h with a collapse at the nonadhesive side of BMDMs along the nucleus. There was an increase in size and deformation into a kidney-like shape, followed by a decrease in size that correlates with a global cellular collapse. The collapse of F-actin was correlated with a release of focal adhesion on the patterns and decreased cell size. Finally, the cell nucleus was affected by actin reorganization. By using this technology, we could describe many previously unknown macrophage cellular dysfunctions induced by ET. This novel tool could be used to analyze more broadly the effects of toxins and other virulence factors that target the cytoskeleton.


Assuntos
Antraz/metabolismo , Antígenos de Bactérias/metabolismo , Bacillus anthracis/metabolismo , Toxinas Bacterianas/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , Animais , Antraz/microbiologia , Antígenos de Bactérias/genética , Bacillus anthracis/genética , Toxinas Bacterianas/genética , Citoesqueleto/microbiologia , Feminino , Humanos , Camundongos Endogâmicos C57BL
2.
Infect Immun ; 82(2): 864-72, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24478099

RESUMO

The dynamics of the lung immune system at the microscopic level are largely unknown because of inefficient methods of restraining chest motion during image acquisition. In this study, we developed an improved intravital method for two-photon lung imaging uniquely based on a posteriori parenchymal tissue motion correction. We took advantage of the alveolar collagen pattern given by the second harmonic generation signal as a reference for frame registration. We describe here for the first time a detailed dynamic account of two major lung immune cell populations, alveolar macrophages and CD11b-positive dendritic cells, during homeostasis and infection by spores of Bacillus anthracis, the agent of anthrax. We show that after alveolar macrophages capture spores, CD11b-positive dendritic cells come in prolonged contact with infected macrophages. Dendritic cells are known to carry spores to the draining lymph nodes and elicit the immune response in pulmonary anthrax. The intimate and long-lasting contacts between these two lines of defense may therefore coordinate immune responses in the lung through an immunological synapse-like process.


Assuntos
Antraz/patologia , Bacillus anthracis/imunologia , Células Dendríticas/imunologia , Pulmão/patologia , Macrófagos Alveolares/imunologia , Animais , Antraz/imunologia , Pulmão/imunologia , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica/métodos
3.
Toxins (Basel) ; 4(2): 83-97, 2012 02.
Artigo em Inglês | MEDLINE | ID: mdl-22474568

RESUMO

Bacillus anthracis, the agent of anthrax, has gained virulence through its exotoxins produced by vegetative bacilli and is composed of three components forming lethal toxin (LT) and edema toxin (ET). So far, little is known about the effects of these toxins on the eukaryotic cytoskeleton. Here, we provide an overview on the general effects of toxin upon the cytoskeleton architecture. Thus, we shall discuss how anthrax toxins interact with their receptors and may disrupt the interface between extracellular matrix and the cytoskeleton. We then analyze what toxin molecular effects on cytoskeleton have been described, before discussing how the cytoskeleton may help the pathogen to corrupt general cell processes such as phagocytosis or vascular integrity.


Assuntos
Antígenos de Bactérias/toxicidade , Bacillus anthracis/fisiologia , Toxinas Bacterianas/toxicidade , Citoesqueleto/efeitos dos fármacos , Antígenos de Bactérias/metabolismo , Bacillus anthracis/patogenicidade , Toxinas Bacterianas/metabolismo , Matriz Extracelular/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Proteínas dos Microfilamentos , Proteínas de Neoplasias/metabolismo , Ligação Proteica/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...